Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiovasc Imaging ; 39(8): 1535-1546, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148449

RESUMO

Noninvasive identification of active myocardial inflammation in patients with cardiac sarcoidosis plays a key role in management but remains elusive. T2 mapping is a proposed solution, but the added value of quantitative myocardial T2 mapping for active cardiac sarcoidosis is unknown. Retrospective cohort analysis of 56 sequential patients with biopsy-confirmed extracardiac sarcoidosis who underwent cardiac MRI for myocardial T2 mapping. The presence or absence of active myocardial inflammation in patients with CS was defined using a modified Japanese circulation society criteria within one month of MRI. Myocardial T2 values were obtained for the 16 standard American Heart Association left ventricular segments. The best model was selected using logistic regression. Receiver operating characteristic curves and dominance analysis were used to evaluate the diagnostic performance and variable importance. Of the 56 sarcoidosis patients included, 14 met criteria for active myocardial inflammation. Mean basal T2 value was the best performing model for the diagnosis of active myocardial inflammation in CS patients (pR2 = 0.493, AUC = 0.918, 95% CI 0.835-1). Mean basal T2 value > 50.8 ms was the most accurate threshold (accuracy = 0.911). Mean basal T2 value + JCS criteria was significantly more accurate than JCS criteria alone (AUC = 0.981 vs. 0.887, p = 0.017). Quantitative regional T2 values are independent predictors of active myocardial inflammation in CS and may add additional discriminatory capability to JCS criteria for active disease.


Assuntos
Cardiomiopatias , Miocardite , Sarcoidose , Humanos , Estudos Retrospectivos , População do Leste Asiático , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Inflamação
2.
Heliyon ; 8(2): e08962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243082

RESUMO

BACKGROUND: Determination of the total number and size of all pulmonary metastases on chest CT is time-consuming and as such has been understudied as an independent metric for disease assessment. A novel artificial intelligence (AI) model may allow for automated detection, size determination, and quantification of the number of pulmonary metastases on chest CT. OBJECTIVE: To investigate the utility of a novel AI program applied to initial staging chest CT in breast cancer patients in risk assessment of mortality and survival. METHODS: Retrospective imaging data from a cohort of 226 subjects with breast cancer was assessed by the novel AI program and the results validated by blinded readers. Mean clinical follow-up was 2.5 years for outcomes including cancer-related death and development of extrapulmonary metastatic disease. AI measurements including total number of pulmonary metastases and maximum nodule size were assessed by Cox-proportional hazard modeling and adjusted survival. RESULTS: 752 lung nodules were identified by the AI program, 689 of which were identified in 168 subjects having confirmed lung metastases (Lmet+) and 63 were identified in 58 subjects without confirmed lung metastases (Lmet-). When compared to the reader assessment, AI had a per-patient sensitivity, specificity, PPV and NPV of 0.952, 0.639, 0.878, and 0.830. Mortality in the Lmet + group was four times greater compared to the Lmet-group (p = 0.002). In a multivariate analysis, total lung nodule count by AI had a high correlation with overall mortality (OR 1.11 (range 1.07-1.15), p < 0.001) with an AUC of 0.811 (R2 = 0.226, p < 0.0001). When total lung nodule count and maximum nodule diameter were combined there was an AUC of 0.826 (R2 = 0.243, p < 0.001). CONCLUSION: Automated AI-based detection of lung metastases in breast cancer patients at initial staging chest CT performed well at identifying pulmonary metastases and demonstrated strong correlation between the total number and maximum size of lung metastases with future mortality. CLINICAL IMPACT: As a component of precision medicine, AI-based measurements at the time of initial staging may improve prediction of which breast cancer patients will have negative future outcomes.

3.
J Thorac Imaging ; 37(3): 154-161, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387227

RESUMO

OBJECTIVES: The aim of the study is to investigate the performance of artificial intelligence (AI) convolutional neural networks (CNN) in detecting lung nodules on chest computed tomography of patients with complex lung disease, and demonstrate its noninferiority when compared against an experienced radiologist through clinically relevant assessments. METHODS: A CNN prototype was used to retrospectively evaluate 103 complex lung disease cases and 40 control cases without reported nodules. Computed tomography scans were blindly evaluated by an expert thoracic radiologist; a month after initial analyses, 20 positive cases were re-evaluated with the assistance of AI. For clinically relevant applications: (1) AI was asked to classify each patient into nodules present or absent and (2) AI results were compared against standard radiology reports. Standard statistics were performed to determine detection performance. RESULTS: AI was, on average, 27 seconds faster than the expert and detected 8.4% of nodules that would have been missed. AI had a sensitivity of 67.7%, similar to an accuracy reported for experienced radiologists. AI correctly classified each patient (nodules present/absent) with a sensitivity of 96.1%. When matched against radiology reports, AI performed with a sensitivity of 89.4%. Control group assessment demonstrated an overall specificity of 82.5%. When aided by AI, the expert decreased the average assessment time per case from 2:44 minutes to 35.7 seconds, while reporting an overall increase in confidence. CONCLUSION: In a group of patients with complex lung disease, the sensitivity of AI is similar to an experienced radiologist and the tool helps detect previously missed nodules. AI also helps experts analyze for lung nodules faster and more confidently, a feature that is beneficial to patients and favorable to hospitals due to increased patient load and need for shorter turnaround times.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Inteligência Artificial , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
BMC Med ; 19(1): 55, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658025

RESUMO

BACKGROUND: Artificial intelligence (AI) in diagnostic radiology is undergoing rapid development. Its potential utility to improve diagnostic performance for cardiopulmonary events is widely recognized, but the accuracy and precision have yet to be demonstrated in the context of current screening modalities. Here, we present findings on the performance of an AI convolutional neural network (CNN) prototype (AI-RAD Companion, Siemens Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV) on low-dose chest CT (LDCT), and compare results to expert radiologists. We also correlate AI findings with adverse cardiopulmonary outcomes in a retrospective cohort of 117 patients who underwent LDCT. METHODS: A total of 117 patients were enrolled in this study. Two CNNs were used to identify lung nodules and CACV on LDCT scans. All subjects were used for lung nodule analysis, and 96 subjects met the criteria for coronary artery calcium volume analysis. Interobserver concordance was measured using ICC and Cohen's kappa. Multivariate logistic regression and partial least squares regression were used for outcomes analysis. RESULTS: Agreement of the AI findings with experts was excellent (CACV ICC = 0.904, lung nodules Cohen's kappa = 0.846) with high sensitivity and specificity (CACV: sensitivity = .929, specificity = .960; lung nodules: sensitivity = 1, specificity = 0.708). The AI findings improved the prediction of major cardiopulmonary outcomes at 1-year follow-up including major adverse cardiac events and lung cancer (AUCMACE = 0.911, AUCLung Cancer = 0.942). CONCLUSION: We conclude the AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on standard screening low-dose chest CT. This information can be used to improve diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs. There is also potential application in countries with limited numbers of cardiothoracic radiologists.


Assuntos
Inteligência Artificial/normas , Cálcio/metabolismo , Vasos Coronários/fisiopatologia , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...